Biotechnology Letter®2: 431-435, 2000.

© 2000KIuwer Academic Publishers. Printed in the Netherlands. 431

[V |
5

Minireview

Mechanical manipulation of animal cells: cell indentatiort

Wolfgang H. Goldmann
Departments of Pathology and Surgery, Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
(Fax: (617) 355 7043; E-mail: goldmann_w@hub.tch.harvard.edu)

Received and accepted 1 February 2000

Key words:cell membrane, mechanical stimulation, relaxation

Abstract

Determining the mechanical properties and behavior of cells has been studied through a variety of methods in-
cluding micropipette aspiration, atomic force microscopy (AFM), magnetometry, rheology, and cell indentation.
Using the cell poker technique, the force required to indent the cell surface by a glass stylus or the relaxation time
of the cell membrane can be determined. This method provides information about both the mechanical properties
of adherent cells and the internal cytoskeleton. For example, using the cell poking technique showed that F9
mouse embryonic carcinoma cells wer20% more resistant to indentation by the cell poker compared to F9
vinculin-deficient (5.51) cells, which were derived by chemical mutagenization of F9 cells. This was confirmed in

viscoelastic measurements using AFM, magnetometry, and rheology.

Introduction

An important question in biological science and in
many other fields is how groups of animal cells and

molecules associate to form three-dimensional tissues

that exhibit specialized form, shape, and function
(Ingberet al. 1994). These interactions between the
cells and molecules are controlled by a complex sys-
tem of chemical and physical determinants at the
molecular level; actin-containing contractile micro-
filaments are responsible for force transduction in
cells and thus play a central role in determining cell
shape (Ingbeet al. 1995). In addition, extracellular
matrix (ECM) molecules can play a significant role
in these tissue formations: the ECM appears to be
structurally interconnected with microfilaments via a
continuous series of noncovalent binding interactions,
involving actin-associated proteins like vinculin, talin,
a-actinin, filamin, and transmembrane integrin recep-
tors (Goldmanret al. 1996, Giancotti & Ruoslahti

as the manifestation of an underlying physical force
distribution between molecules, both intracellular and
extracellular, as demonstrated in studies by Wang &
Ingber (1995) and Eichinget al. (1996).

In the force distribution, mechanical perturbation
of cell surfaces or cortical cytoskeleton may have
direct effects on the tension of capillary endothe-
lial cells; recent studies suggest that extracellular
matrix-dependent changes in cell shape may affect
cell growth as well (Dikeet al. 1999). Another pos-
sibility is that tension-dependent changes in cell shape
and subsequent cytoskeletal reorganization might al-
ter the structural system for signal transduction within
capillary cells (Singhvet al. 1994). For example, ex-
tracellular alterations of physical force distributions
may be translated directly into changes of mechani-
cal forces of actin filaments that physically link the
plasma membrane through structural reorganization
of the cytoskeleton. Ingber (1993) explains this as
a ‘mechano-chemical relation: the dependence of

1999). Therefore, changes in cell shape must be seencytoskeletal polymerization upon tension and com-

*This article is dedicated to Professor Erich Sackmann on his
65th birthday for his achievements in the field of biophysics and
biomechanics.

pression has a thermodynamic basis and viscoelastic
implication that forms a continuum within living cells.
Observations of changes in torsional strain (Wang &
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Ingber 1994) confirm that cell shape changes in a co- i.e., cell membranes of circulating blood cells and ad-

ordinated fashion as the cell progresses from a round herent cells (Dailyet al. 1984, Duszyket al. 1989).

to a spread form. This suggests that biophysical in- Their aim was to record the dynamic response of the

teractions may play a central role in these processescell membrane to external signals. Changes in cell

by altering cell shape through external force stumuli. shape and cytoskeletal organization associated with

To understand the role of external forces with regard physiological processes should be quantitatively de-

to cell shape change and viscoelasticity, it is neces- tectable with the cell poker. These researchers laid

sary to elucidate the mechanical/physical basis of the down the theoretical basis for measuring elastic and

connection between the plasma membrane and cy-viscous material properties resulting from tension gen-

toskeleton though the most likely pathway, viz., the eration at the lipid/protein interface, i.e., at the cell

focal adhesion complex (FAC). membrane-cytoskeleton connection (Zahaktkal.
Although there has been intensive investigation 1990).

into how the cytoskeleton responds to chemical stim-

uli, the mechanism by which external forces are trans-

mitted across the cell surface and transduced into a Materials and methods

cytoskeletal response is only poorly understood. The

mechanical properties of cells have been measuredCell indentation

by micropipette aspiration, micromanipulation, mag-

netometry, atomic force microscopy, and cell-poking The principle of the cell poking elastometer and its

elastometry. Evans and coworkers (Evans 1980, 1983,schematic representation are shown in Figure 1A, B.

Discheret al. 1994) have used the micropipette aspi- This is a purpose-built apparatus, developed by Dr

ration technique for the past two decades on red blood Markus Ziegler, Technical University of Munich and

cells to determine how the shear rigidity is associated based on the design by Duszgk al. (1989), and

with membrane-linked proteins like spectrin, band described in Goldmanet al. (1998b). In brief, this

3, and protein 4.1; and recent findings further have instrumentis mounted on an inverted microscope that

shown that the underlying cytoskeleton contributes allows accurate three-dimensional lateral positioning

significantly to cell elasticity. The atomic force micro-  (Within 1 nm precision) of the glass stylus. The defor-

scope (AFM) has also proven to be an effective tool mation of the cellmembrane (a human erythrocyte) at-

for investigating cell elasticity by using its ability to ~ tached to a bovine serum albumin (BSA)-coated glass

detect dynamic changes in the viscoelastic properties COverslip by the glass stylus is measured by reflection

of the cell with a high spatial and temporal resolution interference contrast microscopy (RICM) and bright

(Radmacheet al. 1992). The AFM has been used field optics. After instantaneous computer-controlled

to examine the surface morphology and mechanical retraction of the glass poker up tq.n, ten individual

properties of MDCK, human platelets, and F9 mouse Video frames were captured at 25 Hz (Figures 1B, 1C),

embryonic carcinoma cells (Hoh & Schoenenberger and the membrane deformation was analyzed accord-

1994, Radmachest al. 1996, Goldmanmt al. 1998a,  ing to Equation (1). The cell is suspended in 123 mM

b) Another technique' deve|0ped by Wang and col- NaCI, 25 mM glucose, 11 mM SOdiumCitrate, 0.1 mM

leagues, is a magnetic twisting device, which controls adenine, 0.1 mM inosin, and 0.1 vol% vitamin and

mechanical stresses applied directly to cell surface antibiotic solution, pH 7.4.

receptors and hence the cytoskeleton. This is accom-

plished by using magnetic microbeads that are coated Theoretical considerations

with specific integrin ligands (Wanet al. 1993). The

cellulzfr responsg to agpplied(strengst can be)measuredTO (_jescribe the elastic response the following equation

simultaneously by quantitating changes in the rota- (1) is used:

tion (angglar strain)_ pf the _surface—bound magnetic In Ax(t;) = —k * 1;, 1)

beads using a sensitive in-line magnetometer. These

researchers found that the stiffness (ratio of stress towhereAx(#;) = time-dependent ‘lateral deformation’

strain) of the cytoskeleton increases in direct propor- relaxation (nm)k = rate of relaxation (s). From the

tion to the applied stress. A group led by Dr Elliot plot Ax(z;) against time; the decay of the indentation

Elson has developed the cell-poking device in order is observed, wittk = 6.7 s being a measure of the

to measure the force required to indent rigid surfaces,
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Fig. 1. Schematic representation of the cell-poking device (A) and detection system (B). The coverslip and glass stylus are coated with 2.5 mg
and 25 mg BSA i, respectively, to immobilize the erythrocyte and to prevent its attachment to the glass stylus. Images taken after poking
of an erythrocyte and immediate retraction of the glass stylus=ad (s). The retraction of the cell membrane after deformation is recorded in

ten images (C). The rate of relaxation is determined from the analysis of these ten video frames using an elastic response theory (D).
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